

BU | BACKYARD UNIVERSE

innovation that matters

LOCALIZING THE OBJECT OF INTEREST

PGC2432563

(Name of the object, from PixInsight Annotation)

+ some additional Deconvolution & Denoising

Results for object WISEA J113253.44+530749.0

Overview Cross-IDs (10) Coordin	nates (8) Redshifts (3)		ifications (0) Galactic Extin	nctions Notes (0) Dia	meters (8)
Photometry & SED (55) Spectra (1)	Images (0) References	(11) External Links	Survey Coverage		
F 1e+13 1e+13 2 3 1e+14 2 3 1e+11 v [Hz]	53	POSS-II F (North), AA View in IRSA Finderch Image Credit: Caltech or AA		Image	
Selected data and derived quantitie:	s for WISEA J113253.44+5	30749.0. More inforn	nation in the tabs above.		
Cross-identifications				Essential not	te
WISEA J113253.44+530749.0; 2MASS J113	25338+5307491; SDSS J113253	.40+530748.8; SDSS J11	3253.40+530749.0; SDSS J1132	53.41+530749.0	
Coordinates for Fiducial Position Equatorial (J2000)					Galactic
RA, Dec	RA, Dec [Deg]	Unc Semi-major,m	inor ["] Unc PA [deg]	Reference	Lon, Lat [d
11h32m53.4486s, +53d07m49.019s	173.222702, 53.130283	0.15400, 0.14900		2013wise.rept	
				2013Wise.rep	
Fiducial Redshift & Derived Quantities [z (Helio)	H ₀ = 67.8 km/sec/Mpc, Ωmat cz (Helio) [km/s]	ter = 0.308, Ωvacuum = Reference	cz (CMB) [km/s	1	Redshift-i nce (CMB) [Mpc] Mean Dista
0.178061 ± 1.67e-5	53381 ± 5	2023arXiv230606		790.05 ± 55.3	
	J3361 ± J	202381 XIV230000	506D 55505 ± 14	790.00 ± 33.0	30 N/A ± N/A
Classifications					
Object Type	Morphology	Reference	Activity Type	Reference	Other
G					
Quick-look Angular & Physical Diameter					Galactic Extinction (201)
		Reference	Diameter† [kp	c] A _λ [mag] Land	dolt V A _k [mag] U
Passband	Diameter ["]	Reference	Diameter ([kpi	cj Ak [mag] cam	doit v Ag [mag] c

SimBAD search to get the coordinates

https://simbad.cds.unistra.fr/simbad,

<text><text><section-header></section-header></text></text>				PGC2432563					
					Help				
<complex-block></complex-block>	rry : PGC2432563								
	sic data :								
						SIMBAD	Query around within	2 arcmin	
<image/>	RS coord. (ep=J2000) : 64 coord. (ep=B1950 eq=1950) al coord. (ep=22000) : dial velocity / Redshift / cz : agular size (arcmin):	11 32 53.466 +53 07 48 :11 30 08.558 +53 24 23 146.866631 +60.155025 V(tox/s) 48667 [12] / z (0pt) C 20124p352 0.25 0.20 12 (0pt) E 2 u (AB) 18.467 [0.403] g (AB) 18.169 [0.411] r (AB) 17.161 [0.407] i (AB) 17.764 [0.403]	<pre>52 (Optical) [23 :: 116 [23 22 90] [23 22 90] (spectroscopic) 0.1 0321A C 2012ApJS2032 C 2012ApJS2032 B 2012ApJS2032 B 2012ApJS2032</pre>	7804 [0.00084] / cz 53375.0 [1 11A 11A 11A	2.0]	11 32 5 Januar	3,446 (+53 07 45 92)	e ^o	
						FoV: 1.3	O 2MASS O DSS 🖲 (SE	<i>(P</i>) 155 ∨)	
Associated in the second s						_	-		c**
https://ned.ipac.caltech.edu/ NASAIPAC Extragalactic Database Normation						Pho	stometry within 5	arcsec 🕢	
Nome Search Objects Literature Services Tools Information # Here: * Search Objects * liter Hame or Position (Come) • </th <th></th> <th></th> <th></th> <th></th> <th>ŀ</th> <th></th> <th></th> <th></th> <th></th>					ŀ				
Search for Objects Near Name or Near Position (Cone Search) Type Acar Name Search More Position Search UJU Search System Equations V1000 V Instands 4068 - 53607m88 228 1 Redshift Constraints Rappes Unconstrainte V					on abo	ut the	e obje	ct	
Type Near Name Search Near Position Search () MUJ Search System Equational RA Dec Radius (arcmin, maximum: 60) Equational V 2000 V 11132m63.466s -53407m48.92a 1 Reduit Constraints Range Types Unconstrained V V V V	https://n	ed.ipac.o	caltech. VIPAC Ex	edu/ ttragalactic Da		ut the	e obje	ct (
System Equinox RA Dec Radius (arcmin, maximum: 60) Equatorial v J2000 v (m32m63.406s -53607m48.92s 1 Redshift Constraints Range Types Utronstrained v	https://n	NASA	caltech. VIPAC Ex	edu/ ttragalactic Da		ut the	e obje	ct /	
Equatorial v J2000 v 11932m63.466s +53697m48.92s I Redultif Constraints Range Types Unconstrainted v	https://n	ned.ipac.co	VIPAC Ex	edu/ tragalactic Da	tabasé	ut the	e obje	ct /	
Range Types Unconstrained •	https://n	A Position Search (Core)	VIPAC Ex Services -	edu/ tragalactic Da Tools Netomation S sition (Cone Search	tabase h)	ut the	e obje	ct	
Unconstrained •	https://n	Literature Literature Literature Mean Position Search Ka	A Itech.	ectu/ tragalactic Da Tools Information & sition (Cone Searce	tabase h)	ut the	e obje	ct	
Ga	https://n	Literature Literature Literature Mean Position Search Ka	A Itech.	ectu/ tragalactic Da Tools Information & sition (Cone Searce	tabase h)	ut the	e obje	ct	
	https://n	Literature Literature Literature Mean Position Search Ka	A Itech.	ectu/ tragalactic Da Tools Information & sition (Cone Searce	tabase h)	ut the	e obje	ct	

OBJECT DATA from NED

What the hell does all these numbers mean? Results for object WISEA J113253.44+530749.0 Cross-IDs (10) Coordinates (8) Redshifts (3) Galactic Extinctions Diameters (8) Overview References Survey Coverage Photometry & SED (55) Spectra (1) POSS-II E (North), AAO-SES/SERC-ER (South), Red image 10+1 • 1e+1 ew in IRSA Finderchart age Credit: Caltech or AAO/POR 10+13 5 10 14 v [Hz Selected data and derived quantities for WISEA J113253.44+530749.0. More information in the tabs above. Cross-WISEA 1113253.44+530749.0: 2MASS 111325338+5307491: SDSS 1113253.40+530748.8: SDSS 1113253.40+530749.0: SDSS 1113253.41+530749.0 Coordinates for Fiducial Position Equatorial (J2000) Galactic RA, Dec RA, Dec [Deg] Unc PA [dea] Reference Unc Semi-major.minor ["] Lon Lat [dec 11h32m53.4486s, +53d07m49.019s 173.222702, 53.130283 0.15400, 0.14900 0 2013wise.rept....1C 146.864601. Fiducial Redshift & Derived Quantities [Ho = 67.8 km/sec/Mpc, Qmatter = 0.308, Qvacuum = 0.692] Redshift-ind z (Helio) cz (Helio) [km/s] Reference cz (CMB) [km/s] Hubble Distance (CMB) [Mpc] Mean Distan 0.178061 ± 1.67e-5 53381 ± 5 2023arXiv230606308D 53565 ± 14 790.05 ± 55.30 $N/A \pm N/A$ Classifications Morphology Reference Activity Type Reference Other Object Type G **Ouick-look Angular & Physical Diameters** Foreground Galactic Extinction (2011A Reference Diameter† [kpc] A_λ [mag] Landolt V A_λ [mag] UKI Passhand Diameter ["] r (SDSS Isophotal) 16.43 2007SDSS6.C...0000 62.97 0.037 0.004 [†]Derived physical diameter is based on the Hubble flow distance corrected for (Virgo + GA + Shapley) = 790.41 Mpc

PGC2432563 / WISFA 1113253.44+530749.0

EXPLANATION OF THE NED TABLE DATA

Cross-identifications

WISEA J113253.44+530749.0; 2MASS J11325338+5307491; SDSS J113253.40+530748.8; SDSS J113253.40+530749.0; SDSS J113253.41+530749.0

Cross-identifications = WISEA J113253.44+530749.0

A list of alternative names or catalog entries for the same astronomical object across different surveys and databases

Coordinates for Fiducial Position						
Equatorial (J2000)		Galactic				
RA, Dec	RA, Dec [Deg]	Unc Semi-major,minor ["]	Unc PA [deg]	Reference	Lon, Lat [deg	
11h32m53.4486s, +53d07m49.019s	173.222702, 53.130283	0.15400, 0.14900	0	2013wise.rept1C	146.864601,	

Coordinates for Fiducial Position

The Fiducial Position refers to the reference sky coordinates used to define the exact location of an

object in the sky — usually given in a standard celestial coordinate system (Equatorial J2000)

RA, Dec = 11h32m53.4486s, +53d07m49.019s Right Ascension (RA) and Declination (DEC) Coordinates

UNC Semi-major, minor = 0.15400, 0.14900 Uncertainties of the measured size and shape – specifically its ellipse-like shape. RA, Dec [Deg] = 173.222702, +53.130283 Coordinates on the celestial sphere

24h = 360°, → 1h = 15° Example

$$RA(Deg) = 11 \cdot 15^\circ + \frac{32}{60} \cdot 15^\circ + \frac{53.4486}{3600} \approx 173.2227^\circ$$

Essential note

EXPLANATION OF THE NED TABLE DATA

Fiducial Redshift & Derived Quantities [H ₀ = 67.8 km/sec/Mpc, Ωmatter = 0.308, Ωvacuum = 0.692]							
z (Helio)	cz (Helio) [km/s]	Reference	cz (CMB) [km/s]	Hubble Distance (CMB) [Mpc]	Mean Distanc		
0.178061 ± 1.67e-5	53381 ± 5	2023arXiv230606308D	53565 ± 14	790.05 ± 55.30	N/A ± N/A		

Fiducial Redshift & Derived Quantities [H₀ = 67.8 km/sec/Mpc, Ω_{matter} = 0.308, Ω_{vacuum} = 0.692]

z-Helio = 0.178061 ± 1.67e-5 (Measured!!)

The redshift of the galaxy relative to the Sun (heliocentric frame). Measures how much the light was stretched by the expansion of the Universe.

c_z (Helio) [km/s] = 53381 ± 5 (calculated)

Recession velocity (in km/s), calculated by multiplicate the speed of light with the measured redshift, relative to the Sun

Reference = 2023arXiv230606308D

The paper or catalog where this redshift measurement was published.

cz (CMB) [km/s] = 53565 ± 14 (calculated)

Velocity of the galaxy relative to the cosmic microwave background (CMB).cz(CMB) is a corrected version of cz(Helio), compensating for the motion of the Earth and Solar System relative to the CMB.

Hubble Distance (CMB) [Mpc] = 790.05 ± 55.30 (calculated)

The comoving distance is derived from the Friedmann–Lemaitre–Robertson–Walker (FLRW) metric by integrating over redshift using a cosmological model with specified parameters (e.g. H_0 , Ω_{matter} , Ω_{vacuum}). At low redshifts, this reduces to Hubble's law, which provides a good approximation when the expansion of the Universe hasn't changed significantly over time.

$c_z = 299792.458 \frac{km}{2} \cdot 0.178061 \approx 53381 \frac{km}{2}$

EXPLANATION OF THE NED TABLE DATA

lassifications							
Object Type	Morphology	Reference	Activity Type	Reference	Other		
G							

Classification = *G*

This is a broad classification indicating that the object is confirmed to be a galaxy — but no specific subtype (like spiral, elliptical, irregular, or AGN) is assigned (yet).

Quick-look Angular & Physical Diameters	Foreground Galactic Extinction (2011Ap										
Passband	Diameter ["]	Reference	Diameter† [kpc]	A_{λ} [mag] Landolt V	A _λ [mag] UKI						
r (SDSS Isophotal)	16.43	2007SDSS6.C0000:	62.97	0.037	0.004						
+Derived physical diameter is based on the Hubble flow distance corr	ected for (Virgo + GA + Shapley) = 790.41 Mpc			Derived physical diameter is based on the Hubble flow distance corrected for (Virgo + GA + Shapley) = 790.41 Mpc							

Quick-look Angular & Physical Diameters

Angular Diameter = $16.43^{"}$ tells you how big the object appears on the sky – measured in arcseconds (")

Physical Diameter = 62.97

the true size of the galaxy – in kiloparsecs (kpc) – calculated from the angular size and the galaxy's distance using the angular diameter distance

$$D_{phys} = \theta \cdot D_a$$

$$D_a$$
=790Mpc (Hubble Distance), $D_{arcsec} = 16.43$ "
 $\theta = \frac{\pi}{180} \cdot \frac{D_{arcsec}}{3600} = 7,96549 \cdot 10^{-5}$
 $D_{phys} = 7,96549 \cdot 10^{-5} \cdot 790Mpc = 0,06292Mpc = 62.9kpc$

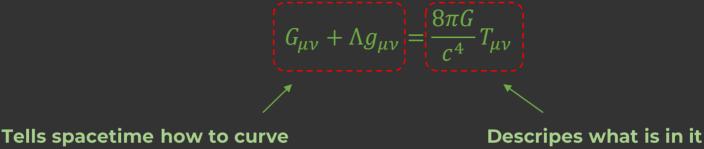
HOW DISTANCES ARE CALCULATED

Hubble's law is a simple linear relation used to estimate distances for nearby galaxies, where the expansion of the Universe hasn't changed significantly over time. The redshift should be small, typically < 0.1

For galaxies at moderate to high redshifts, the Universe's expansion rate has changed significantly due to the influence of matter and dark energy. In this case, we use the **Comoving Distance Formula**, which is derived from the **Friedmann–Lemaître–Robertson– Walker (FLRW) metric** and a cosmological model.

The most commonly used model is the **Lambda-CDM model**, which will be described on the next slides

Key Assumptions of the ACDM



The universe is homogeneous and isotropic on large scales

Means, it looks the same in all directions and locations!

The expansion and structure of the Universe is described by Einstein's field equations

(Curvature of space time)

(Matter and energy)

Key Assumptions of the ΛCDM – Part 2

The geometry of the universe is flat

That means, that the energy density parameter $oldsymbol{n}$ is equal to 1.

 $\boldsymbol{\varOmega} = \boldsymbol{\varOmega}_m + \boldsymbol{\varOmega}_r + \boldsymbol{\varOmega}_A = \mathbf{1}$

$\Omega_m = Matter Density Parameter$

Describes the fraction of the total energy density of the Universe made of matter

- → Baryonic matter like stars, gas, atoms
- \rightarrow Cold dark matter

Ω_r = Radiation Density Parameter

Fraction of the Universe's total energy density made of radiation

→ Photons from CMB (Comic Microwave Background)

Ω_{Λ} = Dark Energy Density Parameter

Fraction of the Universe's total energy density made of dark energy

Measurements have shown that we live in a really flat universe! $\Omega \approx 1.000 + 0.005$

Key Assumptions of the *ACDM* – Part 3

The Universe consists of

~5% Baryonic matter (normal matter like atoms, gases, matter like you and me)

- ~25% Cold dark Matter (CDM)
- ~70% Dark Energy (Λ)

4

Here, we can find the first parameters from our NED table !!!

				1	1	r
	Fiducial Redshift & Derived Quantities [H ₀	= 67.8 km/sec/Mpc _Ωmatter = 0).308, Ωvacuum = 0.692]			Redshift-ind
	z (Helio)	cz (Helio) [km/s]	Reference	cz (CMB) [km/s]	Hubble Distance (CMB) [Mpc]	Mean Distance
Y	0.178061 ± 1.67e-5	53381 ± 5	2023arXiv230606308D	53565 ± 14	790.05 ± 55.30	$N/A \pm N/A$
	Ê	N 0.200				

```
\Omega_{matter} = 0.308 = \Omega_{Baryonic} + \Omega_{CDM}
```

 $\Omega_{vacuum} = 0.692 = \Omega_{\Lambda}$

 $\Omega_r = 0.00005 \rightarrow$ negligible and not shown

Key Assumptions of the ΛCDM – Part 4

Inflation – The early Universe expanded extremely rapidly, and tiny quantum fluctuations during this phase became the seeds of all large-scale structures we observe today

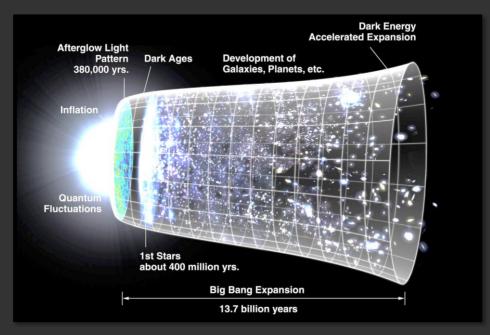
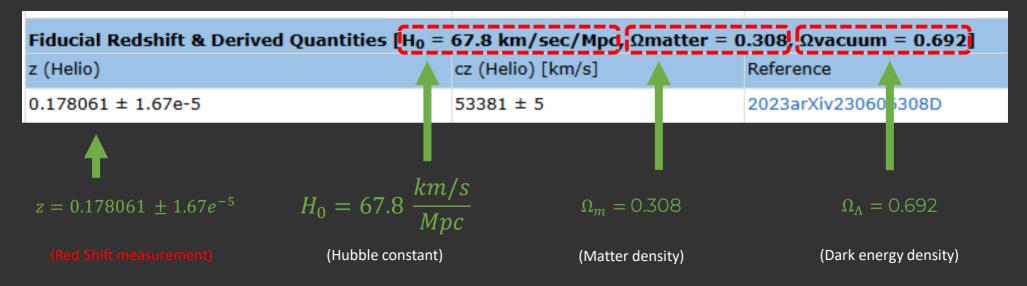



Image by <u>WikiImages</u> from <u>Pixabay</u>

CALCULATION OF THE DISTANCE

The parameters shown in the **NED Table** can be used to calculate the distance and recession velocity

These parameters are used in the **Comoving Distance Integral** to calculate the

distance to the galaxy

$$D_c(z) = rac{c}{H_0} \int\limits_0^z rac{dz'}{E(z')}$$
 (simplified Comoving Distance Formula)

CALCULATION OF THE DISTANCE

The Comoving Distance Formula is an extraction derived from the Friedmann– Lemaître–Robertson–Walker (FLRW) metric

$$D_c(z) = rac{c}{H_0} \int\limits_0^z rac{dz'}{E(z')}$$
 with

 $H_0 = 67.8 \, \frac{km/s}{Mpc}$ (Hubble constant)

 $c = 299792.458 \frac{km}{s}$ (Speed of light)

z = measured redshift

E(z') = normalized Hubble parameter

Since we assume a flat Universe ($\Omega = 1$) and we negligible the energy density of

adiation
$$E(z) = \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}$$

$$D_{c}(z) = \frac{c}{H_{0}} \int_{0}^{z} \frac{dz'}{\sqrt{\Omega_{m}(1+z)^{3} + \Omega_{\Lambda}}}$$

Comoving Distance Formula

CALCULATION OF THE DISTANCE

When we now calculate the Comoving Distance by using a little Python Script

Python Script to calculate the Comoving Distance

```
numpv
                                           Example
     scipv.integrate
    E(z):
           np.sqrt (\Omegam * (1 + z) **3 + \OmegaA)
          1.0 / E(z)
integral, = quad(integrand, 0, z max)
D C = (c / H0) * integral
```

$$\boldsymbol{D}_{\boldsymbol{c}}(\boldsymbol{z}) = \frac{\boldsymbol{c}}{\boldsymbol{H}_{\boldsymbol{0}}} \int_{\boldsymbol{0}}^{\boldsymbol{z}} \frac{\boldsymbol{d}\boldsymbol{z}'}{\sqrt{\Omega_{m}(1+\boldsymbol{z})^{3} + \Omega_{M}}}$$

with

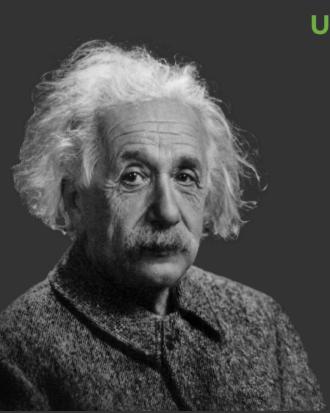
 $H_0 = 67.8 \frac{km/s}{Mpc}$ (Hubble constant) $c = 299792.458 \frac{km}{s}$ (Speed of light)

z = 0.178061 (the redshift measurement from the NED Database)

Comoving Distance $D_c(z) = 754.03 Mpc$

SUMMARIZED IN SIMPLE WORDS

- 1. We observe the light from a distant galaxy using a spectrometer and notice that it is redshifted meaning the wavelength has been stretched due to cosmic expansion
- 2. The redshift tells us how long the light has been traveled the higher the redshift, the farther away the galaxy is!
- 3. Due to the fact that the Universe hasn't expanded at a constant rate (\rightarrow Inflation), we need to account for how fast the Universe was expanding each moment in time.
- 4. We divide the light's journey into many small steps and calculate how far the light traveled in each step, based on the universe's expansion rate at that redshift.
- 5. Finally, we add up all these little steps which gives us the comoving distance \rightarrow the present-day distance to the galaxy accounting the expansion of the universe over time


SUMMARIZED IN SIMPLE WORDS

We calculate how far the light had to travel to reach us

today, taking into account how the expansion of the

Universe changed along the way

Thank you, Albert Einstein

*14.03.1879 † 18. April 1955

WHAT DOES THAT MEAN FOR OUR GALAXY?

Name: WISEA J113253.44+530749.0

z-Helio = 0.178061 + 1.67e-5 c_{7} (Helio) [km/s] = 53381 ± 5 $c_{z,helio} = c \cdot z = 299792.458 \frac{km}{s} \cdot 0.178061 \approx 53381 \frac{km}{s}$ c₇ (CMB) [km/s] = 53565 ±14 📫 $c_{z,CMB} = c_{z,helio} + \vartheta_{corr} = 53381 \frac{km}{s} + \frac{184}{s} \frac{km}{s} \approx 53565 \frac{km}{s}$ with θ = Angle between the direction of the CMB dipole and the direction to the object Hubble Distance (CMB) [Mpc] = 790.05 ± 55.30 📥

 $D_c \approx rac{c_{z,CMB}}{H_0} pprox rac{53565}{k}$

 $\vartheta_{corr} = V_{\odot} \cdot cos\theta$ $V_{\odot} \approx 370 km/s$

Comoving Distance [Mpc] $D_c(z) = 754.03$

Due to a redshift greater than 0.1, the Comoving Distance Formula based on the FLRW metric and the **ACDM model** provides more accurate results compared to the simple **Hubble approximation**.

WHAT DOES THAT MEAN FOR OUR GALAXY?

Name: WISEA J113253.44+530749.0

Hubble Distance (CMB) [Mpc] = 790.05 ± 55.30

Distance based on Hubble Approx. (NED Database value)

 \rightarrow 2.58 billion light-years

Comoving Distance [Mpc] $D_c(z) = 754.03$

Distance based on Comoving Distance

 \rightarrow 2.46 billion light-years

2.46 billion light-years and we can still the spiral structure of the galaxy

Our website www.backyard-universe.de

SimBAD Astronomical Database https://simbad.cds.unistra.fr/simbad/

NASA Extragalactic Database (NED) <u>https://ned.ipac.caltech.edu/</u>